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let P represent a point on the exit surface of the 
crystal. The integrated intensity, Iq (P),  emerging from 
P is 

lq(P) = ~ del~ de2 Dq(el, e2)l 2. (32) 

The integrated power, Pq, is then obtained by integrat- 
ing (32) over the exit surface 

Pq= ~ dPAqlq(P). (33) 
p 

The surface element dP points in the direction of the 
outward drawn normal. 

It is difficult to perform analytically the integrations 
in (31), (32) and (33) and only numerical solutions 
are feasible for arbitrary crystal shapes. 

Concluding remarks 

The Takagi-Taupin equations have been examined 
for three coupled waves in the case of Laue diffrac- 
tion. When the coupling constant 1/,~ s or 1/~'±(h-g) 
becomes negligible it is possible to use integral 
equation techniques to obtain the boundary-value 
Green functions for the wave fields. The solutions, 
excluding any singular terms, may be taken as 
approximate expressions for the fields excited by a 
transversally limited wave packet when keeping away 
from the surface region and the SoSh and the SoSg 
planes. To the author's knowledge no experimental 
study of the frirtges generated by three indirectly 

coupled waves has been published. In principle, it 
should be possible to confirm the spatial behaviour 
of the intensities Iq .-. DqD* by intercepting a beam 
with the aid of a small pin hole or, alternatively, by 
locating a point source close to the surface of the 
crystal. In the case of an incident wave with an 
extended wave front, the intensity can be calculated 
by integrating the Green functions over the entrance 
surface allowing for the proper variation in ampli tude 
of the incident wave. 
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Abstract 
~The simplest level of the statistical geometric (SG) 
or maximum-entropy (ME) approach to X-ray struc- 
ture refinement is applied to the task of trying to 
extend the resolution of electron-density maps for a 
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small protein (a-lactalbumin).  The refinement was 
started from X-ray structure factor data to 4 A reso- 
lution, which had been phased by multiple isomor- 
phous replacement (MIR), and it was found that, 
even at this simple level, the ME-based approach 
yields a significant improvement in the maps and 
gives encouragement to the more general applications 
of these methods. 
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1. Introduction 

As a step toward the implementation of maximum- 
entropy (ME)-based methods of X-ray structure 
refinement and determination (Gull & Daniell, 1978; 
Wilkins, Varghese & Lehmann, 1983; Bricogne, 1984), 
we have investigated how far structural information 
can be extended by a single pass with ME-based 
refinement, starting from multiple isomorphously 
(MIR) phased data for a small protein, a-lactal- 
bumin. Our present work is principally aimed at 
understanding the power of one element of the statis- 
tical geometric (SG) or ME method outlined by Wilk- 
ins, Varghese & Lehmann (1983, hereafter termed 
SG1), rather than at trying to obtain a definitive 'best 
map' by, say, a combination of elements and methods, 
such as by using an iterative process involving suc- 
cessive passes of ME followed by phase recombina- 
tion or by combining several elements of the ME 
method. 

ME-based methods of structure refinement have 
been described by various authors. The essence of 
these is as follows. For a discrete and normalized 
density p, the configurational entropy of the map 
relative to an initial map q is given by (see e.g. Steen- 
strup & Wilkins, 1984; Bricogne, 1984; Wilkins, 
Steenstrup & Varghese, 1985) 

N 

S = - n  ~, p j l n [p f l c~] ,  (1) 
j = l  

where ps and t b are the densities of the current and 
prior map at the j th pixel, while n is a parameter 
which relates to the quantity and quality of the data 
(Wilkins, Steenstrup & Varghese, 1985) but in the 
present context plays no role. The available informa- 
tion (and data) is assumed to be given in the form 
of constraint equations, which for the case of a set, 
D~, of imperfectly phased unitary (i.e. F's scaled by 
Fooo) structure factors, Uk, we have taken to have the 
form 

A(p)=(2N,) - '  X P,, - u,, 2/ ~],, = c , ,  (2) 
k ~ D  I 

corresponding to a reduced g 2 distribution with Pk 
the Fourier transform of p, and trk the estimated 
magnitude of the standard deviation in Uk. The 
summation in (2) is over all Friedel pairs (2N 1 struc- 
ture factors) and the expected value off~ over a large 
number of sets of data should ideally be C~ = 1. A 
value of C~ greater than 1 implies that we are not 
extracting all the information contained in the data, 
while a value of C~ < 1 implies that we are fitting to 
noise as well as signal. Equation (2) represents the 
so-called first constraint; if the reduced g 2 is based 
on amplitudes only, then we obtain the second con- 
straint (SG1). The mathematical and numerical task 
of the ME-based methods of structure refinement is 
to find the map, pS, which maximizes S subject to all 

the available information (Gull & Daniell, 1978; 
SG1). At its lowest and simplest level, this informa- 
tion is taken to be (2). 

2. Application of the ME method to data for 
-lactalbumin 

The present work differs from earlier ME-based 
calculations on three-dimensional data from proteins 
as follows. In the work of Collins (1982), basic 
equations apparently similar to (1) and (2) above 
were used to treat 2 A resolution MIR data for 
rubredoxin, but the guiding principles of the ME 
method were obscured somewhat by: 

(i) duplication of information by its inclusion via 
both the initial map q and the constraint equation; 

(ii) constant updating of the initial map q in the 
iterative process of attempting to solve the ME 
equations numerically; 

(iii) lack of any proper cheek on the convergence 
of the numerical method for treating the ME 
equations. 

More specifically, information that is included in 
q should not in principle (at least not without some 
justification) also be included via constraints, since 
there is a presumption in the ME method that these 
sources of information are independent. This also 
means that q should not in principle be modified 
unless it is to preserve old information as new infor- 
mation is introduced. The lack of any proper check 
on the convergence of the solution to the ME 
equations raises questions as to the nature of the maps 
presented by Collins and any claim to their being ME 
maps. Such doubts are heightened when it is appreci- 
ated that, by continually transferring phases from the 
iterated solution to the measured amplitudes, Collins 
was effectively treating the case of the second con- 
straint (reduced ~,2 based on amplitudes) alone, which 
is fraught with the problems of non-convexity and 
slow convergence (Gull & Daniell, 1978; SG1; 
Bricogne, 1984). 

More recently, a conceptually clean application of 
the ME method with first constraint alone has been 
described by Bricogne (1984), but this was for the 
somewhat artificial case of measured amplitudes with 
refined-model phases for 3 A data for crambin. While 
giving strong support to the relevance of ME methods 
to macromolecular structure refinement and determi- 
nation, his calculations were based on very small 
O'kfS, since the phases were derived from an excep- 
tionally accurate model (Hendrickson & Teeter, 
1981), and so leaves open the question as to the power 
of this component of the method when MIR phases, 
typically with much larger random and systematic 
errors, are used. For this reason we here present a 
brief report on our findings obtained when the ME 
method with first constraint alone was applied to 4 
resolution data with MIR phases for a-lactalbumin 
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(unit cell 33.6 x 69.6 x 47.0/~ and space group 
P212~2), a small protein of 123 residues with strong 
structural (but not functional) homology with the 
c-type lysozymes (Smith, 1982). This structure is cur- 
rently being refined in Oxford (Stuart, Phillips, Lewis 
& Smith, 1985) and we were therefore in the fortunate 
position of having a fairly accurate independent set 
of model phases against which we could compare 
phases produced by ME extrapolation. It should be 
emphasized that these model phases were used solely 
for the purposes of comparison and formed no part 
of the ME calculations. 

Before applying ME to the structure factor data, a 
form of correction for the effect of solvent was applied 
to these data which does not depend on a knowledge 
of the position of the solvent-protein boundary and 
is based on Babinet's principle (Stuart, 1985). The 
net effect of applying this correction was to rescale 
the data by a k-dependent factor which boosts the 
values of the low-angle reflections (say above about 
5/~ resolution) and leaves the high-angle reflections 
virtually unchanged, thereby effectively removing the 
solvent contribution from the low-angle data, at least 
to a crude first approximation. The data were then 
placed on an absolute scale appropriate to protein 
alone. These steps were felt to be helpful to the 
ME-based refinement because the method partly 
relies on positivity of the map. 

Assignment of estimates for the errors, try1, was 
made via the relation 

which ignores correlations in errors between phase 

and amplitude of the given reflection. Values of O'IF I 
were taken based on counting errors and consistency 
between equivalent reflections, while tr, was esti- 
mated from the MIR-determined figures of merit, m, 
via the relation 

o', = arccos ( m , ) .  (4) 

From the set of 3839 MIR-phased reflections inside 
4 A, only those reflections with initial contribution 
to X 2 greater than 2 (i.e. IFI > 4 ~ ,  where or includes 
the estimated error in the phase ~o) when starting with 
a flat map for p were selected for inclusion in the first 
constraint as well as those reflections with IFI < 0.004. 
Thus only 1669 reflections (about ½ in total ~ [Fkl for 
data inside 4/~) were regarded as being strong con- 
tributors to the initial structure refinement process. 

3. Results 

The numerical methods used in the present study are 
based on the work of references SG1 and Wilkins 
(1983) and a skeletal outline of the method and 
algorithm is presented in Appendix 1. With these 
methods, a ME map was calculated on a grid 32 x 48 x 
40 over the unit cell based on a subset of the 4/~ data 
as selected above, and some selected regions of the 
ME map are presented in Figs. 1 and 2. Convergence 
of the solution to a ME solution was established via 
the Skilling criterion (Skilling, 1983) involving a test 
for parallelism between the directions of VS and VX 2 
to a cosine magnitude better than 0.995. A target 
value for C1 = 0.84 was chosen in the refinement, as 
it was deemed better to err slightly on the side of 

FoM weighted map at FoM weighted map at ME map at contour 
contour level 1750 contour level 2000 level 1500 

(a) (b) (c) 
Fig. 1. Equivalent portions of the figure-of-merit-weighted MIR map and the maximum-entropy distribution. The heavy lines join 

bonded atoms in the partially refined (R = 0.27 for data from oo to 1.7 A) model of a-lactalbumin. The distributions are shown as 
meshes enclosing areas of density above the given threshold. These contour levels were chosen to present as fair a comparison as 
possible. Exactly equivalent volumes of the map (and viewpoints) are shown for the two maps. (a), (b) and (c) are centred on 
residue 30 with (a) corresponding to the MIR map with contour level 1750, (b) the MIR map at contour level 2000 and (c) the ME 
map at contour level 1500. Note that the density for the ME distribution is generally sharper, producing an effect of somewhat better 
resolution. That this is not simply an effect of the choice of contour level may be seen from the density around residue Tyr 36. 
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including some noise in the map rather than losing 
possible signal. These ME maps may be compared 
with the corresponding figure of merit (FoM)- 
weighted maps (Figs. 1 and 2) also presented. In each 
case a general sharpening of the ME map relative to 
the FoM maps can be seen. Contour levels were 
chosen as those appropriate for each map and are 
listed in the figure captions. Moreover, when the 
various maps are compared with the current best 
model for c~-lactalbumin, several improvements in 
the ME maps can be seen, in addition to the general 
sharpening, involving a redistribution of the density. 
In particular, it is very encouraging to see (Figs. 
2a, b, c) that some of the least well defined portions 
of the map are improved since some previous attempts 

at structure refinement have, on the contrary, led to 
the stronger features being enhanced at the expense 
of the weaker ones (Blundell & Johnson, 1976). We 
consider that, although the differences between the 
ME map and the appropriately contoured FoM map 
are subtle, they might nevertheless be of considerable 
significance when attempting interpretation of the 
maps in terms of a molecular structure. 

In order to help give a quantitative guide as to the 
extent of the refinement process in reciprocal space, 
we introduce the following correlation function 
('figure of merit'). 

(5) FAB = ~ [F~bs 
k / k  

, , j  

(a) FoM weighted map at contour level 1750 

÷ 

(b) FoM weighted map at contour level 2000 

(c) ME map at contour level 1500 

Fig. 2. (a), (b) and (c) correspond to Figs. l (a),  (b) and (c) 
respectively but are centred on residue 46. Note that the external 
loop is much more clearly defined in the ME map. 
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Fig. 3. Correlation function, F A~, for agreement in phase between 

ME and model phases (solid-line histogram) and MIR and 
model phases (broken-line histogram) as a function of  scattering 
angle. (a) is for high-FoM reflections, while (b) and (c) are 
essentially for intermediate- and low-FoM reflections respec- 
tively. 



STEPHEN W. WILKINS AND DAVID STUART 201 

between sets A and B of corresponding phases. This 
function is clearly +1 if corresponding phases in A 
and B are equal and tends to zero if corresponding 
phases are uncorrelated. In Fig. 3 this correlation 
function is plotted as a function of scattering angle 
for the correlation taken between the refined model 
phases and: 

(i) the corresponding phases obtained from Fourier 
transforming the ME map (solid-line histogram); 

(ii) the corresponding MIR phases (broken line 
histogram). 
The three histograms relate to all reflection data inside 
3 A. subdivided according to the following categories: 
(a) those reflections having figures of merit greater 
than or equal to 0.85 (Fig. 3a); (b) those reflections 
not included in (a) but with individual contribution 
to X: greater than 2 relative to the flat map or with 
IFI < 0.004 (Fig. 3b); and (c) the remainder (Fig. 3c). 

From these results we observe that: (a)  the MIR 
phases included in the X 2 constraint are well fired 
by ME refinement; (/3) considerable phase informa- 
tion is generated by the ME refinement for reflections 
n o t  included in the X ~- constraint. This information 
is found both within the 4 • shell (phase interpola- 
tion) and beyond it (phase extension); (Y) there is 
very little correlation between the information (/3) 
and the MIR phases. This last observation is par- 
ticularly encouraging since it suggests that we could 
treat these two sources of phase information as 
independent and, in principle at least, successively 
repeat the ME refinement with each reflection in turn 
eliminated from the X ~- constraint in order to obtain 
a set of ME phase estimates which would then be 
combined with the MIR phase probability distribu- 
tions. In principle, this would overcome one of the 
limitations of the single-pass ME methods, namely 

Solution of • 

Pj=qj exp {-Xo-X, fi' ~)}  

Subject to the constraints 

and Y pj = 1 

f ~ } :  "reduced X z'' ---1 

re-estimate 
Xo s.t 

L CXo} : 1 

(1) choose an initial trial 
structure, ~ (1) 

(2) ~' 
[ evaluate 2(p{,,) ] (3) p~l) . f~(p(1)), fjj 

I choose a value for Xt 
I 

t 
I evaluatef('~('})lT < r 

I choose a trial value for ] 
Xo 

t 
F solve SPE, i.e. 

-fV; D Inpj+U~ 1, pj "= O, 
I for j=l N 

t 
evaluate ] 
_., N (2) 

L ( ̂ oJ = fi=l Pi 

/ ~  I evaluate 

I 

set 

~°c'~:~°°' I - ~  

, 

I set ] NO /eclnSCl~- '~ 
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iterates p(1)and~(a : 

,~pop'i . . . .  ,~p'l) + ,/~ [,l~'2)_ 1) (1) ] 
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Fig. 4. Flow chart of the algorithm used in the present maximum-entropy refinement of data for a-lactalbumin using only the first 
constraint [equation (2) of text]. Equation numbers inside flow chart refer to those in upper-left-hand comer of the figure. 
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the representation of the, frequently bimodal, MIR  
phase probability distributions as unimodal. 

More generally, other types of information, such 
as those listed in SG1 and including non-convex 
constraints, may be incorporated into the maps via 
ME and using the present map as a starting solution. 
The more information that is introduced, the smaller 
should be the range of allowable solutions, even when 
uniqueness cannot be guaranteed. 

We are grateful to various colleagues for helpful 
discussion and encouragement including Drs S. 
Steenstrup, J. N. Varghese, P. Colman, A. McL. 
Mathieson, W. Hendrickson and J. Skilling. One of  
us (SWW) is grateful to the Royal Society for the 
award of a Visiting Fellowship and to Professor Sir 
David Phillips for his encouragement of this work 
and for extending the hospitality of his department 
for a stay during which this work was largely 
undertaken. 

APPENDIX 1 

The algorithm used in deriving the present ME struc- 
tures is essentially that outlined in our previous work 
(SG1; Wilkins, 1983), but with only the first constraint 
[equation (2)] operative. With the same notation as 

in our earlier works, a flow chart of the algorithm is 
presented in Fig. 4 and includes indications as to 
where additional processing (such as local smooth- 
ing) may be carried out, although such processing 
was not actually carried out in the present study. 
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Abstract 

The equilibrium equations of classical elasticity for a cubic 
crystal are solved and Green's tensor for elastic displace- 
ments is derived. 

1. Introduction 

The point force technique provides a powerful tool for the 
solution of problems in the continuum theory of elasticity, 
particularly in the continuum theory of dislocation (Hirth 
& Lothe, 1968). The only difficulty arising is in representing 
Green's tensor. It is known explicitly for isotropy and 
transverse isotropy, but not general anisotropy. The aim of 
this paper is to obtain Green's tensor for an infinite three- 
dimensional body with cubic symmetry. 

0108 -7673 / 86/030202-02 $01.50 

2. Formulation of the problem 

The usual suffix notation will be employed. The summations 
should be carried out on repeated indices. This convention 
is adopted throughout this paper. 

The equilibrium equation of classical elasticity is most 
easily obtained in a coordinate system whose bases parallel 
the cubic axes of the matrix. The cubic matrix has three 
independent elastic constants, the Voigt constants c~1, cx2 
and c44 (Hirth & Lothe, 1968). With the definitions 

C12 = A, c44=1 x , ct1- c12- 2c~ = Al, 

the fourth-order elastic tensor may be written in the follow- 
ing form: 

Cijkm = t~ij~km "~ ~.~( ~ik~jm -~ ~im~jk) 

+ A18~i8i~8k,,, (1) 
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